2013 Annual Drinking Water Quality Report Geary Utilities Authority

We're very pleased to provide you with this year's Annual Drinking Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a safe and dependable supply of drinking water. This report shows our water quality and what it means.

Our water source is **ground water from the Ogallala pool**. The Geary Utilities Authority is proud to inform the public that a Reverse Osmosis Water Treatment Plant has been in operation since October 26, 2000. This plan supplies potable water to over 1937 municipal and rural customers. An analysis of contamination susceptibility of our source water has been done. The analysis showed that our water's susceptibility to contamination is LOW. [This plan is available for viewing in our office. - OR- We are working on the source water protection plan. Once it is completed the source water protection plan will be available in our office.] Information such as potential sources of contamination is listed in the plan.

If you have any questions about this report or concerning your water utility, please contact **the Public Works Director**, **Jeff Choate**, **or City Clerk**, **Mary Hays**, **at 115 S. Broadway**, **or call 405-884-5466**. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on **the first Thursday of each month**, **providing the first Thursday is not before the 4th day of the month**, **then the meeting will be held on the next following Thursday**.

The Geary Utilities Authority routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, **2013.** (Some of our data may be more than one year old because the state allows us to monitor for some contaminants less often than once per year.) All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily pose a health risk.

WATER QUALITY DATA TABLE

The table below lists all of the drinking water contaminants we detected for the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/l)

Parts per billion (ppb) or Micrograms per liter (ug/l)

Parts per trillion (ppt) or Nanograms per liter (nanograms/l)

Parts per quadrillion (ppq) or Picograms per liter (picograms/l)

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Millirems per year (mrem/yr) - measure of radiation absorbed by the body.

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level (MCL) - The MCL is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal- The MCLG is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

WATER QUALITY DATA						
Contaminant	Violation Yes/No	Highest Level Detected	Range Detected	MCL	MCLG	Likely Source of Contamination
	Mie	crobiolog	ical Conta			
1. Total Coliform Bacteria (System takes ≥40 monthly samples) (System takes <40 monthly samples) (highest number of samples in a single month)				5% positive 1 positive	0	Naturally present in the environment
2. Fecal coliform and E.coli (highest number of samples in a single month)				a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or E. coli positive	0	Human and animal fecal waste
3. Turbidity (NTU)				TT = 1 NTU	N/A	Soil runoff
(highest single measurement) 4. Turbidity (NTU)				TT ≤ 0.3 NTU	N/A	+
(highest monthly level)				in 95% of monthly samples	N/A	
5. Total Organic Carbon				TT		Naturally present in the environment
	Ra	diochemi	ical Conta	minants		
6. Gross Beta (pCi/L)				50	0	Decay of natural and man-made deposits
7. Gross Alpha (pCi/L)				15	0	Erosion of natural deposits
8. Combined radium 226/228 (pCi/L)				5	0	Erosion of natural deposits
9. Uranium (pCi/L or ug/l)				20.1 pCi / L Or 30 ug / L	0	Erosion of natural deposits
		Inorgani	c Contam			
10. Antimony (ppb)				6	6	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
11. Arsenic (ppb)				10	0	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
12. Barium (ppb)				2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Beryllium (ppb)				4	4	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries

14. Bromate (ppb)	10	0	By-product of drinking water ozonation
15. Cadmium (ppb)	5	5	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
16. Chloramines (ppm)	MRDL = 4	MRDLG = 4	Water additive used to control microbes
17. Chlorine (ppm)	MRDL = 4	MRDLG = 4	Water additive used to control microbes
18. Chlorite (ppm)	1	0.8	Water additive used to control microbes
19. Chlorine Dioxide (ppb)	MRDL = 800	MRDLG = 800	Water additive used to control microbes
20. Chromium (ppb)	100	100	Discharge from steel and pulp mills; erosion of natural deposits
21. Copper (ppm)	AL=1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
22. Cyanide (ppb)	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
23. Fluoride (ppm)	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
24. Lead (ppb)	AL=15 Action Level – 90% of samples must be below	0	Corrosion of household plumbing systems, erosion of natural deposits
25. Mercury (ppb) (inorganic)	this level.	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
26. Nitrate - NO ₃ (ppm) (as Nitrogen)	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
27. Nitrite - NO ₂ (ppm) (as Nitrogen)	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
28. Selenium (ppb)	50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from

			mines
29. Thallium (ppb)	2	0.5	Leaching from ore- processing sites; discharge from electronics, glass, and drug factories
,	olatile Organic Contaminants		
30. Benzene (ppb)	5	0	Discharge from factories; leaching from gas storage tanks and landfills
31. Carbon tetrachloride (ppb)	5	0	Discharge from chemical plants and other industrial activities
32. Chlorobenzene (ppb)	100	100	Discharge from chemical and agricultural chemical factories
33. o-Dichlorobenzene (ppb)	600	600	Discharge from industrial chemical factories
34. p-Dichlorobenzene (ppb)	75	75	Discharge from industrial chemical factories
35. 1,2-Dichloroethane (ppb)	5	0	Discharge from industrial chemical factories
36. 1,1-Dichloroethylene (ppb)	7	7	Discharge from industrial chemical factories
37. cis-1,2-Dichloroethylene (ppb)	70	70	Discharge from industrial chemical factories
38. trans - 1,2 -Dichloroethylene (ppb)	100	100	Discharge from industrial chemical factories
39. Dichloromethane (ppb)	5	0	Discharge from pharmaceutical and chemical factories
40. 1,2- Dichloropropane (ppb)	5	0	Discharge from industrial chemical factories
41. Ethylbenzene (ppb)	700	700	Discharge from petroleum refineries
42. Haloacetic Acids (HAA5) (ppb)	60	N/A	By-product of drinking water chlorination
43. Styrene (ppb)	100	100	Discharge from rubber and plastic factories; leaching from landfills
44. Tetrachloroethylene (ppb)	5	0	Leaching from PVC pipes; discharge from factories and dry cleaners
45. 1,2,4- Trichlorobenzene (ppb)	70	70	Discharge from textile- finishing factories
46. 1,1,1 - Trichloroethane (ppb)	200	200	Discharge from metal degreasing sites and other factories
47. 1,1,2 - Trichloroethane (ppb)	5	3	Discharge from industrial chemical factories
48. Trichloroethylene (ppb)	5	0	Discharge from metal degreasing sites and other factories
49. TTHM [Total trihalomethanes] (ppb)	80	N/A	By-product of drinking water chlorination
50. Toluene (ppm)	1	1	Discharge from petroleum factories

51. Vinyl Chloride (ppb)	2	0	Leaching from PVC piping; discharge from
52. Xylenes (ppb)	10	10	plastics factories Discharge from petroleum
			factories; discharge from chemical factories
Syntheti	c Organic Contaminants		
53. Alachlor (ppb)	2	0	Runoff from herbicide used on row crops
54. Atrazine (ppb)	3	3	Runoff from herbicide used on row crops.
55. Carbofuran (ppb)	40	40	Leaching of soil fumigant used on rice and alfalfa
56. Chlordane (ppb)	2	0	Residue of banned termiticide
57. Dalapon (ppb)	200	200	Runoff from herbicide used on rights of way
58. Dibromochloropropane (ppb)	200	0	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
59. Dinoseb (ppb)	7	7	Runoff from herbicide used on soybeans and vegetables
60. Diquat (ppb)	20	20	Runoff from herbicide use
61. Endothall (ppb)	100	100	Runoff from herbicide use
62. Endrin (ppb)	2	2	Residue of banned insecticide
63. Glyphosate (ppb)	700	700	Runoff from herbicide use
64. Heptachlor (ppb)	400	0	Residue of banned pesticide
65. Methoxychlor (ppb)	40	40	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
66. Oxamyl [Vydate] (ppb)	200	200	Runoff/leaching from insecticide used on apples, potatoes and tomatoes
67. Pentachlorophenol (ppb)	1	0	Discharge from wood preserving factories
68. Picloram (ppb)	500	500	Herbicide runoff
69. PCBs [Polychlorinated biphenyls] (ppb)	500	0	Runoff from landfills; Discharge of waste chemicals
70. Simazine (ppb)	4	4	Herbicide runoff
71. Toxaphene (ppb)	3	0	Runoff/leaching from insecticide used on cotton and cattle
72. BHC Gamma- Lindane (ppb)	200	200	Runoff/leaching from insecticide used on cattle, lumber, gardens
73. 2,4-D (ppb)	70	70	Runoff from herbicide used on row crops

74. 2,4,5-TP [Silvex] (ppb)		50	50	Residue of banned
				herbicide

Microbiological Contaminants:

- (1) Total Coliform. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially- harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.
- (2) Fecal coliform/E.Coli. Fecal coliforms and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.
- (3) & (4) Turbidity. Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.
- (5) Total organic carbon (TOC) has no health effects. However, total organic carbon provides a medium for the formation of disinfection byproducts. These byproducts include trihalomethanes (THMs) and haloacetic acids (HAAs). Drinking water containing these byproducts in excess of the MCL may lead to adverse health effects, liver, or kidney problems, or nervous system effects, and may lead to an increased risk of getting cancer.

Radiochemical Contaminants:

- (6) Gross Beta. Certain minerals are radioactive and may emit forms of radiation known as photons and beta radiation. Some people who drink water containing beta and photon emitters in excess of the MCL over many years may have an increased risk of getting cancer.
- (7) Gross Alpha. Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.
- (8) Combined Radium 226/228. Some people who drink water containing radium 226 or 228 in excess of the MCL over many years may have an increased risk of getting cancer.
- (9) Uranium. Some people who drink water containing uranium in excess of the MCL over many years may have an increased risk of getting cancer and kidney toxicity.

Inorganic Contaminants:

- (10) Antimony. Some people who drink water containing antimony well in excess of the MCL over many years could experience increases in blood cholesterol and decreases in blood sugar.
- (11) Arsenic. Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.
- (12) Barium. Some people who drink water containing barium in excess of the MCL over many years could experience an increase in their blood pressure.
- (13) Beryllium. Some people who drink water containing beryllium well in excess of the MCL over many years could develop intestinal lesions.
- (14) Bromate. Some people who drink water containing bromate in excess of the MCL over many years may have an increased risk of getting cancer.
- (15) Cadmium. Some people who drink water containing cadmium in excess of the MCL over many years could experience kidney damage.
- (16) Chloramines. Some people who use water containing chloramines well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chloramines well in excess of the MRDL could experience stomach discomfort or anemia.
- (17) Chlorine. Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.
- (18) Chlorite. Some infants and young children who drink water containing chlorine dioxide in excess of the MRDL could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorite in excess of the MCL. Some people may experience anemia.
- (19) Chlorine Dioxide. Some infants and young children who drink water containing chlorine dioxide in excess of the MRDL could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorine dioxide in excess of the MRDL. Some people may experience anemia.
- (20) Chromium. Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis.
- (21) Copper. Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's disease should consult their personal doctor.
- (22) Cyanide. Some people who drink water containing cyanide well in excess of the MCL over many years could experience nerve damage or problems with their thyroid.
- (23) Fluoride. Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease,

including pain and tenderness of the bones. Children may get mottled teeth.

- (24) Lead. Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.
- (25) Mercury (inorganic). Some people who drink water containing inorganic mercury well in excess of the MCL over many years could experience kidney damage.
- (26) Nitrate. Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.
- (27) Nitrite. Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.
- (28) Selenium. Selenium is an essential nutrient. However, some people who drink water containing selenium in excess of the MCL over many years could experience hair or fingernail losses, numbness in fingers or toes, or problems with their circulation.
- (29) Thallium. Some people who drink water containing thallium in excess of the MCL over many years could experience hair loss, changes in their blood, or problems with their kidneys, intestines, or liver.

Volatile Organic Contaminants:

- (30) Benzene. Some people who drink water containing benzene in excess of the MCL over many years could experience anemia or a decrease in blood platelets, and may have an increased risk of getting cancer.
- (31) Carbon Tetrachloride. Some people who drink water containing carbon tetrachloride in excess of the MCL over many years could experience problems with their liver and may have an increased risk of getting cancer.
- (32) Chlorobenzene. Some people who drink water containing chlorobenzene in excess of the MCL over many years could experience problems with their liver or kidneys.
- (33) o-Dichlorobenzene. Some people who drink water containing o-dichlorobenzene well in excess of the MCL over many years could experience problems with their liver, kidneys, or circulatory systems.
- (34) p-Dichlorobenzene. Some people who drink water containing p-dichlorobenzene in excess of the MCL over many years could experience anemia, damage to their liver, kidneys, or spleen, or changes in their blood.
- (35) 1, 2-Dichloroethane. Some people who drink water containing 1, 2-dichloroethane in excess of the MCL over many years may have an increased risk of getting cancer.
- (36) 1, 1-Dichloroethylene. Some people who drink water containing 1, 1-dichloroethylene in excess of the MCL over many years could experience problems with their liver.
- (37) cis-1, 2-Dichloroethylene. Some people who drink water containing cis-1, 2-dichloroethylene in excess of the MCL over many years could experience problems with their liver.
- (38) trans-1, 2-Dicholoroethylene. Some people who drink water containing trans-1, 2-dichloroethylene well in excess of the MCL over many years could experience problems with their liver.
- (39) Dichloromethane. Some people who drink water containing dichloromethane in excess of the MCL over many years could have liver problems and may have an increased risk of getting cancer.
- (40) 1, 2-Dichloropropane. Some people who drink water containing 1, 2-dichloropropane in excess of the MCL over many years may have an increased risk of getting cancer.
- (41) Ethylbenzene. Some people who drink water containing ethylbenzene well in excess of the MCL over many years could experience problems with their liver or kidneys.
- (42) Haloacetic Acids. Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.
- (43) Styrene. Some people who drink water containing styrene well in excess of the MCL over many years could have problems with their liver, kidneys, or circulatory system.
- (44) Tetrachloroethylene. Some people who drink water containing tetrachloroethylene in excess of the MCL over many years could have problems with their liver, and may have an increased risk of getting cancer.
- (45) 1, 2, 4-Trichlorobenzene. Some people who drink water containing 1, 2, 4-trichlorobenzene well in excess of the MCL over many years could experience changes in their adrenal glands.
- (46) 1, 1, 1,-Trichloroethane. Some people who drink water containing 1, 1, 1-trichloroethane in excess of the MCL over many years could experience problems with their liver, nervous system, or circulatory system.
- (47) 1, 1, 2-Trichloroethane. Some people who drink water containing 1, 1, 2-trichloroethane well in excess of the MCL over many years could have problems with their liver, kidneys, or immune systems.
- (48) Trichloroethylene. Some people who drink water containing trichloroethylene in excess of the MCL over many years could experience problems with their liver and may have an increased risk of getting cancer.
- (49) TTHMs [Total Trihalomethanes]. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.
- (50) Toluene. Some people who drink water containing toluene well in excess of the MCL over many years could have problems with their nervous system, kidneys, or liver.
- (56) Vinyl Chloride. Some people who drink water containing vinyl chloride in excess of the MCL over many years may have an increased risk of getting cancer.

(57) Xylenes. Some people who drink water containing xylenes in excess of the MCL over many years could experience damage to their nervous system.

Synthetic Organic Contaminants:

- (58) Alachlor. Some people who drink water containing alachlor in excess of the MCL over many years could have problems with their eyes, liver, kidneys, or spleen, or experience anemia, and may have an increased risk of getting cancer.
- (59) Atrazine. Some people who drink water containing atrazine well in excess of the MCL over many years could experience problems with their cardiovascular system or reproductive difficulties.
- (60) Carbofuran. Some people who drink water containing carbofuran in excessof the MCL over many years could experience problems with their blood, or nervous or reproductive systems.
- (61) Chlordane. Some people who drink water containing chlordane in excess of the MCL over many years could experience problems with their liver or nervous system, and may have an increased risk of getting cancer.
- (62) Dalapon. Some people who drink water containing dalapon well in excess of the MCL over many years could experience minor kidney changes.
- (63) Dibromochloropropane. Some people who drink water containing dibromochloropropane in excess of the MCL over many years could experience reproductive problems and may have an increased risk of getting cancer.
- (64) Dinoseb. Some people who drink water containing dinoseb well in excess of the MCL over many years could experience reproductive difficulties.
- (65) Diquat. Some people who drink water containing diquat in excess of the MCL over many years could get cataracts.
- (66) Endothall. Some people who drink water containing endothall in excess of the MCL over many years could experience problems with their stomach or intestines.
- (67) Endrin. Some people who drink water containing endrin in excess of the MCL over many years could experience liver problems.
- (68) Glyphosate. Some people who drink water containing glyphosate in excess of the MCL over many years could experience problems with their kidneys or reproductive difficulties.
- (69) Heptachlor. Some people who drink water containing heptachlor epoxide in excess of the MCL over many years could experience liver damage, and may have an increased risk of getting cancer.
- (70) Methoxychlor. Some people who drink water containing methoxychlor in excess of the MCL over many years could experience reproductive difficulties.
- (71) Oxamyl [Vydate]. Some people who drink water containing oxamyl in excess of the MCL over many years could experience slight nervous system effects.
- (72) Pentachlorophenol. Some people who drink water containing pentachlorophenol in excess of the MCL over many years could experience problems with their liver or kidneys, and may have an increased risk of getting cancer.
- (73) Picloram. Some people who drink water containing picloram in excess of the MCL over many years could experience problems with their liver.
- (74) PCBs [Polychlorinated biphenyls]. Some people who drink water containing PCBs in excess of the MCL over many years could experience changes in their skin, problems with their thymus gland, immune deficiencies, or reproductive or nervous system difficulties, and may have an increased risk of getting cancer.
- (75) Simazine. Some people who drink water containing simazine in excess of the MCL over many years could experience problems with their blood.
- (76) Toxaphene. Some people who drink water containing toxaphene in excess of the MCL over many years could have problems with their kidneys, liver, or thyroid, and may have an increased risk of getting cancer.
- (77) BHC Gamma- Lindane. Some people who drink water containing lindane in excess of the MCL over many years could experience problems with their kidneys or liver.
- (78) 2, 4-D. Some people who drink water containing the weed killer 2, 4-D well in excess of the MCL over many years could experience problems with their kidneys, liver, or adrenal glands.
- (79) 2, 4, 5-TP [Silvex]. Some people who drink water containing silvex in excess of the MCL over many years could experience liver problems.

Inadequately treated water may contain disease-causing organisms. These organisms include bacteria, viruses, and parasites, which can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (1-800-426-4791).

Stage 2 DBP Rule requires some systems to complete an Initial Distribution System Evaluation (IDSE) to characterize DBP levels in their distribution systems and identify locations to monitor DBPs for Stage 2 DBP Rule compliance. The following table summarizes the individual sample results for the IDSE monitoring in (year):

Contaminant	Number of Analyses	Minimum Level	Highest Level
		Detected	Detected
Haloacetic Acids			
(HAA5) (ppb)			
Total Trihalomethanes			19.8
(TTHM) (ppb)			

As required by the Ground Water Rule we collected samples from our sources and had them analyzed for fecal contamination (*E. coli*). No samples resulted in a positive test.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

What does this mean?

As you can see by the table, our system had no violations. We are proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminants have been detected. The EPA has determined that your water IS SAFE at these levels.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water before we treat it include:

- *Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- *Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- *Pesticides and herbicides, which may come from a variety of sources such as agriculture and residential uses.
- *Radioactive contaminants, which are naturally occurring.
- *Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can, also, come from gas stations, urban stormwater runoff, and septic systems.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Geary Utility Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a significant increased risk of having the described health effect.

Total Coliform: The Total Coliform Rule requires water systems to meet a stricter limit for coliform bacteria. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease-causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public by newspaper, television or radio. To comply with the stricter regulation, we have increased the average amount of chlorine in the distribution system.

Nitrates: As a precaution we always notify physicians and health care providers in this area if there is ever a higher than normal level of nitrates in the water supply.

Lead: Lead in drinking water is rarely the sole cause of lead poisoning, but it can add to a person's total lead exposure. All potential sources of lead in the household should be identified and removed, replaced or reduced.

If necessary include language for non-English speaking customers. The following is the Spanish translation for 'This report contains important information about your drinking water. Get someone to translate for you or talk to someone who understands it well.' Este informe contiene información importante acerca de su aqua potable. Haga que alguien lo traduzca para usted o hable con alguien que lo entienda bien.

In our continuing efforts to maintain a safe and dependable water supply it may be necessary to make improvements in your water system. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary in order to address these improvements.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Please call our office if you have questions.

We at The Geary Utility Authority work around the clock to provide top quality water to every tap, said Public Works Director Jeff Choate.

This notice is being sent to you by The City of Geary Utility Authority, PWSID No. OK 2000608

For further information contact:

Name: Mary J. Hays

Address: 115 S. Broadway or P.O. Box 125 Phone Number: 405-884-5466

Date distributed: <u>June 20, 2014</u> Signed: <u>Mary J. Hays City Clerk/Treasurer</u>